Math 121 Homework #4 Spring 2007 Due Monday May 7

Page 82-- #8, 9, 10

Also:

1. A compact exhaustion of a metric space X is a sequence K_1, K_2, K_3, \ldots of compact subsets of X such that

1. $K_j \subset interior \text{ of } K_{j+1}$, all j

2. $\cup K_j = X$

Show that if $\{f_i\}$ is a sequence of functions from X to \mathbb{R} such that for each j, the sequence

 $\{f_i|K_j:i=1,2,3...\}$ is bounded and equicontinuous, then there is a subsequence of $\{f_i\}$ which converges uniformly on every compact subset of X. (Suggestion: Use a "diagonal process" to get uniform convergence on each K_j and note that if $C \subset X$, C compact, then $C \subset$ some $K_{i,j}$

2. Suppose F(x,y,z) is a continuously differentiable function on \mathbb{R}^3 with f(0,0,0)=0 and $\frac{\partial f}{\partial z}\Big|_{(0,0,0)} \neq 0$. Show that there is an $\varepsilon > 0$ such that, for each (x,y) with $x^2 + y^2 < \varepsilon$, there is a \mathbf{z}

(depending on x and y) with f(x,y,z)=0. Give an example to show that the condition

 $\frac{\partial f}{\partial z}\Big|_{(0,0,0)} \neq 0$ cannot de dropped (in general) and have the conclusion remain true.